Expert Review: Process Mining: Data science in Action
5.0/5.0
Our Expert Verdict
Verdict: Process Mining: Data science in Action is unequivocally the leading program in its category for 2026. Our expert review team scored it a **5.0/5.0** for its comprehensive curriculum and direct career impact.
Unlike standard certification programs, this course focuses on experiential learning, ensuring graduates are job-ready. If you are serious about mastering Eindhoven University of Technology, this is a definitive investment.
Enroll Now & Get Certified ↗What We Liked (Pros)
- Unmatched depth in Eindhoven University of Technology methodology.
- Capstone project perfect for portfolio building.
- Taught by industry leaders from Eindhoven University of Technology.
- Flexible learning schedule that fits professional life.
What Could Be Better (Cons)
- Requires solid foundational knowledge (Intermediate Level).
- Certification fee is higher than average.
Course Overview
This course, provided by Eindhoven University of Technology, is characterized by its rigor and practical application focus. The curriculum covers essential concepts: Process mining is the missing link between modelbased process analysis and dataoriented analysis techniques. Through concrete data sets and easy to use software the course provides data science knowledge that can be applied directly to analyze and improve processes in a variety of domains. Data science is the profession of the future, because organizations that are unable to use (big) data in a smart way will not survive. It is not sufficient to focus on data storage and data analysis. The data scientist also needs to relate data to process analysis. Process mining bridges the gap between traditional modelbased process analysis (e.g., simulation and other business process management techniques) and datacentric analysis techniques such as machine learning and data mining. Process mining seeks the confrontation between event data (i.e., observed behavior) and process models (handmade or discovered automatically). This technology has become available only recently, but it can be applied to any type of operational processes (organizations and systems). Example applications include: analyzing treatment processes in hospitals, improving customer service processes in a multinational, understanding the browsing behavior of customers using booking site, analyzing failures of a baggage handling system, and improving the user interface of an Xray machine. All of these applications have in common that dynamic behavior needs to be related to process models. Hence, we refer to this as "data science in action". The course explains the key analysis techniques in process mining. Participants will various process discovery algorithms. These can be used to automatically process models from raw event data. Various other process analysis techniques that use event data will be presented. Moreover, the course will provide easytouse software, reallife data sets, and practical skills to directly apply the theory in a variety of application domains. starts with an overview of approaches and technologies that use event data to support decision making and business process (re)design. Then the course focuses on process mining as a bridge between data mining and business process modeling. The course is at an introductory level with various practical assignments. The course covers the three main types of process mining. The first type of process mining is discovery. A discovery technique takes an event log and produces a process model without using any apriori information. An example is the Alphaalgorithm that takes an event log and produces a process model (a Petri net) explaining the behavior recorded in the log. The second type of process mining is conformance. Here, an existing process model is compared with an event log of the same process. Conformance checking can be used to check if reality, as recorded in the log, conforms to the model and vice versa. The third type of process mining is enhancement. Here, the idea is to extend or improve an existing process model using information about the actual process recorded in some event log. Whereas conformance checking measures the alignment between model and reality, this third type of process mining aims at changing or extending the apriori model. An example is the extension of a process model with performance information, e.g., showing bottlenecks. Process mining techniques can be used in an offline, but also online setting. The latter is known as operational support. An example is the detection of nonconformance at the moment the deviation actually takes place. Another example is time prediction for running cases, i.e., given a partially executed case the remaining processing time is estimated based on historic information of similar cases. Process mining provides not only a bridge between data mining and business process management; it also helps to address the classical divide between "business" and "IT". Evidencebased business process management based on process mining helps to create a common ground for business process improvement and information systems development. The course uses many examples using reallife event logs to illustrate the concepts and algorithms. After taking , one is able to run process mining projects and have a good understanding of the Business Process Intelligence field. After taking you should: have a good understanding of Business Process Intelligence techniques (in particular process mining), understand the role of Big Data in today’s society, be able to relate process mining techniques to other analysis techniques such as simulation, business intelligence, data mining, machine learning, and verification, be able to apply basic process discovery techniques to a process model from an event log (both manually and using tools), be able to apply basic conformance checking techniques to compare event logs and process models (both manually and using tools), be able to...
Re-confirm Course Details ↗